Year 3 Calculation Policy

Addition								
Learning Ladders Assessment Statement	Concrete	Pictorial	Abstract					
3A. 1 - I can add multiples 10 and 100		$\begin{gathered} 225+200 \\ 21+30=51 \\ \left.1\right\|^{\circ}+\\| \\|=\\| \\| \\|\left.\right\|^{\circ} \end{gathered}$	$\begin{gathered} 21+30=51 \\ 51=21+30 \\ 225+100= \\ 225+200= \\ 225+\ldots=325 \end{gathered}$					
3A. 1 - I can add near multiples 10 and 100			$\begin{gathered} 34+19= \\ 34+20-1 \end{gathered}$					
I can add multiples of 5 and 10 to make a hundred			$65+5+30=100$					
3A. 2 - I can perform place value additions (e.g. $300+4+20=324)$		$\begin{aligned} & 300+4+20=324 \\ & \square \square:: 11 \end{aligned}$	$\begin{gathered} 300+4+20=324 \\ 330+\ldots=334 \\ \ldots+30+4=234 \\ 234+\ldots=334 \end{gathered}$					
3A. 3 - I can add any 2-digit number by partitioning	$\begin{gathered} 55+3 \cdot 7= \\ 50+3.0=80 \\ 5+7=12 \\ 80+12 \cdot 92 \end{gathered}=$	$\begin{aligned} \frac{50}{50}>+\sqrt{30} \Delta & =80 \\ 15 & =12 \\ 80+12 & =92 \end{aligned}$	$\begin{gathered} 55+37= \\ 50+30=80 \\ 5+7=12 \\ 80+12=92 \end{gathered}$					
3A. 4 - I can add a pair of 2-digit numbers by counting on	$53+26=79$	$\begin{array}{r} 53+26=79 \\ +20 \end{array} \underbrace{+6}_{53} \begin{array}{r} 79 \end{array}$	$\begin{gathered} 53+26= \\ 53+20+6=79 \end{gathered}$					

Year 3 Calculation Policy

Addition- Written Methods			
Learning Ladders Assessment Statement	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { 3A. } 6 \text { - } \text { can use } \\ & \text { expanded } \\ & \text { column addition } \end{aligned}$		T 0 IIIII \vdots 11 $\vdots::$ 70 9$=79$	$\begin{array}{r} 53+26= \\ 503 \\ +\quad 206 \\ \hline 709 \end{array}$
			$36+26$ 1 306 20 +10 60
3A. 7 - I can use efficient column addition to add numbers with 3 digits	 Group the 1 s into a ten and move it into the tens column		$\begin{aligned} & 466 \\ & 358 \\ & \frac{11}{824} \end{aligned}$
			$\begin{array}{r} 146 \\ +527 \\ \hline 673 \\ \hline \end{array}$

Year 3 Calculation Policy

Subtraction			
Learning Ladders Assessment Assessment Statement	Concrete	Pictorial	Abstract
3S.1-I can subtract multiples of 10 and 100 (e. 36-20=		$136-20=$ $\square 111:-11=\square 1: \vdots$	136-20 $=116$
I can subtract by partitioning (e.g. 55-32 as and $5-2$) \qquad	$55-32=$ $55-322=$ $55-32=$ $50-30=20$ $5-2=3$ $55-32=23$	$\begin{aligned} \frac{50}{\sqrt{5}}-\sqrt{30} & =20 \\ \sqrt{\|2\|} & =\frac{3}{23} \end{aligned}$	$\left\{\begin{array}{c} 55-32=23 \\ 50-30=20 \\ 5-2=\frac{3}{23} \end{array}\right.$
3S. 3 - I can takeaway multiples and near multiples of 10 and 100			$\left\lvert\, \begin{aligned} & 34-19= \\ & 30-20+1= \end{aligned}\right.$

Year 3 Calculation Policy

Subtraction			
Learning Ladders Assessment Statement	Concrete	Pictorial	Abstract
3S.4-I can count back in hundreds, tens and then ones using an unstructured number line (e.g. 763-121)			$\begin{aligned} & 55-32=22 \\ & 55-30-2=23 \end{aligned}$ $763-121=$ $\begin{gathered} 763-100-20-1 \\ =642 \end{gathered}$
35.5 - I can count on (FROG) from a 2-digit number to a number bigger than 100 (e.g. 14376)	$54-47=$		$\begin{gathered} 143-76=67 \\ 76+4+20+43= \\ 143 \\ 4+20+43=67 \end{gathered}$
3S. 6 - I can find change from $£ 1$, $£ 5$ and $£ 10$ by counting up		$€ 5-£ 2.38$	$\begin{gathered} £ 5-£ 2.38=£ 2.62 \\ £ 2.38+£ 0.02+ \\ £ 0.60+£ 2=£ 5 \\ £ 0.02+£ 0.60+£ 2 \\ £ 2.62 \end{gathered}$

Year 3 Calculation Policy			
Multiplication			
Learning Ladders Assessment Statement	Concrete	Pictorial	Abstract
3M． 1 －I know by heart all the multiplication facts in x2，x3，x4，x5，x8，x10 tables		$\begin{aligned} & \text { 目 } 1 \times 3=3 \\ & \text { 明 } 2 \times 3=6 \\ & \text { 昍 } 3 \times 3=9 \\ & \text { 昍昍 } 4 \times 3=12 \end{aligned}$	$\begin{gathered} 1 \times 3=3 \\ 2 \times 3=6 \\ 3 \times 3=9 \\ 4 \times 3=12 \\ 5 \times 3=15 \\ 6 \times 3=18 \\ 7 \times 3=21 \\ 8 \times 3=24 \\ 9 \times 3=27 \\ 10 \times 3=30 \end{gathered}$
3M． 2 －I know that multiplication can be done in any order （commutative）	Use arrays	$\begin{aligned} & 3 \times 4=12 \\ & 0000 \\ & 0000 \\ & 0000 \\ & 4 \times 3=12 \\ & 000 \\ & 000 \\ & 000 \\ & 0 \end{aligned} 00$	$\begin{gathered} 3 \times 4=12 \\ \text { so } 4 \times 3=12 \end{gathered}$
3M． 3 －I can multiply whole numbers by 10 and 100	$21 \times 10=$	$\begin{aligned} & 21 \times 10=210 \\ & 100 \mathrm{~s} \\ & \hline \\ & \hline 10 \mathrm{~s} \\ & \hline \text { (10) } \\ & \text { (10) } \\ & \text { (1) } \\ & \hline \end{aligned}$	th h t 0 2 1 2 1 0
3M． 4 －I can use related facts to multiply multiples of 10 e．g． $2 \times 3=6$ $2 \times 30=60$	（1） $2 \times 3=6$ （1） 1 （10）（10） $2 \times 30=60$ （10） 10	$\begin{aligned} & \text { (1) (1) (1) } 2 \times 3=6 \\ & \text { (1) (1) } \\ & \text { (1) } \\ & \text { (1) (10) } 2 \times 30=60 \\ & \text { (10) (10) (1) } \end{aligned}$	$\begin{aligned} & 2 \times 3=6 \\ & 2 \times 30=60 \end{aligned}$
3M．5－I can double numbers upto 50 by partitioning	$43 \times 2=86$ 40 3 10101010 10101010 $8=86$	$\begin{gathered} 43 \times 2=86 \\ 40 \\ 0000 \\ 0000 \\ 0000 \\ 80 \\ 8000 \\ 0 \end{gathered}$	$\begin{gathered} 43 \times 2=86 \\ 43 \\ 40^{1} 6 \\ 86^{\prime} \end{gathered}$

Year 3 Calculation Policy

Multiplication			
\qquad	Concrete	Pictorial	Abstract
3M. 6 - I can partition teen numbers into 10's and ones to multiply (e.g. 3 $\times 14$ as 3×10 and 3×4)	$3 \times 14=42$	$3 \times 14=42$$10 s$ $1 s$ 0 0000 0 0000 0 0000 30 $12=42$	$\begin{aligned} 3 \times 14 & =42 \\ 3 \times 10 & =30 \\ 3 \times 4 & =12 \\ 30+12 & =42 \end{aligned}$
3M. 7 - I can use a grid method to multiply 2-digit and 3-digit numbers by 'friendly' 1- digit numbers			

Year 3 Calculation Policy			
Division			
Learning Ladders Assessment Statement	Concrete	Pictorial	Abstract
3D． 1 －I know by heart all the division facts that can be derived from the $\times 2, x 3, x 4, x 5, x 8$ and $x 10$ tables	$3 \div 3=1$ $6 \div 3=2$ $9 \div 3=3$	$\begin{aligned} & \text { 日 } 3 \div 3=1 \\ & \text { 日日 } 6 \div 3=2 \\ & \text { 日日日 } 9 \div 3=3 \\ & \text { 日日回 } 12 \div 3=4 \end{aligned}$	$\begin{aligned} & 3 \div 3=1 \\ & 6 \div 3=2 \\ & 9 \div 3=3 \\ & 12 \div 3=4 \\ & 15 \div 3=5 \\ & 18 \div 3=6 \\ & 21 \div 3=7 \\ & 24 \div 3=8 \\ & 27 \div 3=9 \\ & 30 \div 3=10 \end{aligned}$
3D．2－I can divide whole numbers by 10 or 100 to give whole number answers	$240 \div 10$ $=24$ 100 10 1 001 0 0 0 0 0 0		$240 \div 10=24$ 100 10 1 2 4 0 2 4
3D． 3 －I can use related facts to divide multiples of 10 by 1 －digit numbers e．g． 32 $\div 8=4$ so $320 \div$ $8=40$		$\begin{aligned} & 180 \div 6=30 \\ & \left.\begin{array}{c\|c\|c\|c\|} 10 \\ 10 \\ 10 \end{array}\right] \end{aligned}$ $18 \div 6=3$	$\begin{gathered} 18 \div 6=3 \\ 180 \div 6=30 \\ 1800 \div 6=300 \end{gathered}$
3D．4－I can halve even numbers to 100， halve odd numbers to 20	$42 \div 2=21$	$42 \div 2=21$ （1）（1）（10） 10 （1） （10） （10）	$\begin{gathered} 42 \div 2=21 \\ 42 \\ 40 \end{gathered}$

Year 3 Calculation Policy			
Division			
\qquad	Concrete	Pictorial	Abstract
Dividing with remainders	$2 \mathrm{~d}+1 \mathrm{~d}$ with remainders using lollipop sticks. Cuisenaire $13+4$ Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 . \square \square \square There are 3 whole squares, with 1 left over.	Children to represent the lollipop sticks pictorially. There are 3 whole squares, with 1 left over	13 $+4-3$ remainder 1 Children should be encouraged to use their repeated addition on a number line. ' 3 groups of 4 , with 1 left over'
Sharing	Sharing using place value counters. $42-3=14$ $42+3=14$	Children to represent the place value counters pictorially.	$\begin{aligned} & 42+3 \\ & 42=30+12 \\ & 30+3=10 \\ & 12+3=4 \\ & 10+4=14 \end{aligned}$
3D.5-I can perform divisions just above the 10th multiple using a number line e.g. $52 \div 4=13$		$52 \div 4=13$	$\begin{aligned} & 52 \div 4= \\ & \frac{13}{10 \times 4} \times 5=\frac{52}{12} \\ & 3 \times 4=\frac{12}{12} \end{aligned}$
3D.6-I can divide larger numbers mentally by subtracting the 10th multiple, including those with remainders e.g. $57 \div 3$	Times tables square	$57 \div 4=14 r 1$	$\begin{aligned} 57 \div 4 & =14 r 1 \\ -\times 4 & =57 \\ 10 \times 4 & =40- \\ 4 \times 4 & =\frac{17}{1} \end{aligned}$

Addition			
Learning Ladders Assessment Statement	Concrete	Pictorial	Abstract
4A. 1 - I know by heart or work out quickly number bonds to 100 or £1		$\underbrace{36+\underline{64}}_{36}=100$	What do you add to 36 to make 100?
4A. 2 - I can add to the next 100, £1 and whole number (e.g. $234+66=$ $300,3.4+0.6=$ 4)			$234+6+60=$ $3.6+\ldots=4$
4A. 3 - I can add near multiples of 10,100 , 1000, £1 and 10p	 Add 100 and take 1 away	$364+99=463$	$364+100-1=463$
4A.5 - I can add 3 and 4 digit numbers using efficient column method		$2634+4517=$Th H T 0 00 888 00 00 00 000 0 00 00 00 0 0000 $\mathbf{0 0}$ 1 0 100 7 1 5 1	$\begin{array}{r} 2634 \\ +4517 \\ \hline 7151 \\ \hline \end{array}$

Year 4 Calculation Policy

| Learning
 Ladders | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Assessment
 Statement | Concrete |

Year 4 Calculation Policy

Year 4 Calculation Policy

Multiplication			
Learning Ladders Assessment Statement	Concrete	Pictorial	Abstract
Year 4 Number Facts 4M． 1 －I know by heart all the multiplication facts up to $12 \times$ 12		$\begin{aligned} & \text { 日 } 1 \times 3=3 \\ & \text { 明 } 2 \times 3=6 \\ & \text { 昍 } 3 \times 3=9 \\ & \text { 日昍 } 4 \times 3=12 \end{aligned}$	$\begin{gathered} 1 \times 3=3 \\ 2 \times 3=6 \\ 3 \times 3=9 \\ 4 \times 3=12 \\ 5 \times 3=15 \\ 6 \times 3=18 \\ 7 \times 3=21 \\ 8 \times 3=24 \\ 9 \times 3=27 \\ 10 \times 3=30 \end{gathered}$
4M． 2 －I can multiply whole numbers and 1 place decimals by 10,100 ， 1000		$2.3 \times 10=2.3$ 10 s $1_{\mathrm{s}}: \frac{1}{10^{5}}$.	$2.3 \times 10=2.3$ 10 s 1 s $\frac{1}{10^{5}}$ 2 3 2 3
4M． 3 －I can use related facts to multiply by multiples of 10 ， 100， 1000 （e．g． 300×6 and 50×60）	$\begin{aligned} & 3 \times 6=18 \\ & 3 \times 60 \\ & 3 \times 600=1800 \end{aligned}$		$\begin{gathered} 3 \times 6=18 \\ 3 \times 60=180 \\ 3 \times 600=1800 \end{gathered}$
4M．4－I can use number facts to make mental multiplication easier e．g． 36×5 is half of 36×10		$\begin{array}{r} 10 \times 24=240 \\ 5 \times 24=120 \end{array}$ （24）（24）（24）（14）（44） （24）（1）（24）（24）（24）	$\begin{gathered} 10 \times 24=240 \\ \text { so } 5 \times 24=120 \end{gathered}$
4M． 5 －I can multiply a 2 － digit by 9 or 11 by multiplying by 10 and adjusting（e．g． 9×25 as （10×25）－25）		$\begin{aligned} & 9 \times 25 \text { as }(10 \times 25)-25) \\ & 25 \quad 25 \quad 25 \quad 25 \quad 25 \\ & 25 \quad 25 \quad 25 \quad 2525 \end{aligned}$	$9 \times 25=(10 \times 25)-25)$

Multiplication			
Learning Ladders Assessment Statement	Concrete	Pictorial	Abstract
4M. 6 - I can use partitioning to find doubles to 100 and beyond			$\begin{gathered} 66 \times 2=132 \\ 66 \\ 1200_{132}^{12} \\ 12 \end{gathered}$
4M. 7 - I can partition 2 digit numbers to multiply by a 1-digit number (e.g. 4×24 as 4×20 and 4×4)		$4 \times 24=96$ (1) (0) 0000 0000 (1) © 00000 (10) 10000 80 80	$\begin{aligned} & 4 \times 24=96 \\ & 24 \\ & 80 \quad 16 \times 4 \\ & 96 \end{aligned}$
4M. 8 - I can use a grid method to multiply a 3digit number by a 1-digit number			$4 \times 231=924$ \times 200 30 800 120 4 924
4M.9-I can use the 'ladder' method to multiply 3digit numbers by 1-digit numbers			$4 \times 231=924$ 231 $\times \quad 4$ $800(200 \times 4)$ 120 4 40 924 9
4.10 - I can use a grid method to multiply a teen number by a 2-digit number			$23 \times 14=322$ 20 10 4 3 30 80 23 230 $92=322$

Year 4 Calculation Policy

Division			
Learning Ladders Assessment Statement	Concrete	Pictorial	Abstract
4D. 1 - I know by heart all the division facts up to $144 \div 12$	$56 \div 3=18 r 2$	$84 \div 3=28$	
4D. 2 - I can divide whole numbers by 10 , 100, to give whole number answers with 1 decimal place		$345 \div 10=34.5$	$345 \div 10=34.5$100 10 1 $\frac{1}{10}$ 3 4 5 3 4 5
4D. 3 - I can use related facts to divide multiples of 100 by 1 -digit numbers e.g. $32 \div 8=4$ so $3200 \div 8=400$	Find the answer to this first $32 \div 8=4$ Use methods taught previously		$32 \div 8=4$ So $320 \div 8=40$ So $3200 \div 8=400$
4D. 4 - I can find halves of even numbers to 200 and beyond using partitioning	$42 \div 2=21$	$42 \div 2=21$ (1)(1)(1)(10) (1) (1) (10) (10) © 21	$\begin{gathered} 42 \div 2=21 \\ 42 \\ 40 \end{gathered}$ Use the same method but with larger numbers.
4D.5-I can divide larger numbers mentally by subtracting the 10th or 20th multiple as appropriate. (96)		$\begin{aligned} & 96 \div 8=\frac{12}{96} \\ & -\times 8=9=\frac{80}{16} \\ & 10 \times 8 \times 8=\frac{16}{0} \end{aligned}$ $8 \begin{array}{r}162 \\ \hline 96 \\ -\quad 80 \\ \hline 166 \\ -\quad 1 \quad 6 \\ \hline\end{array}$

Year 4 Calculation Policy

Division			
Learning Ladders Assessment Statement	Concrete	Pictorial	Abstract
D. 6 - I can use a written method to divide a 2 digit or a 3-digit number by a 1 digit number.			$\begin{array}{r} 3 \\ 2 \\ \cline { 1 - 2 } \\ \hline \end{array}$

